چکیده
این مقاله به توصیف، برآورد بایاس برون خطی و سیستم اصلاح کنترل ترافیک هوایی مرتبط با حسگرها، که در تجهیزات توسعه یافته جدید تحت کنترل اروپا برای ارزیابی سیستم های نظارتی ATC (کنترل ترافیک هوایی) مورد استفاده قرار می گیرد، می پردازد. الگوریتم های تخمین بایاس اساس تمرکزشان را بر روی حسگرهای رادار قرار می دهند، اما راه اندازی حسگرهای جدید (به ویژه سامانه نظارتی اتوماتیک وابسته، و سامانه نظارتی چندگانه) نیازمند توسعه این روش ها می باشد. در این مقاله معماری تخمین بایاس بر مبنای مدل های خطا برای تمام حسگرها طراحی می گردد. مدل های خطای توصیف شده، وابسته به فیزیک فرایند اندازه گیری هستند. نتایج روش های تخمین بایاس با داده های شبیه سازی شده نشان داده می شود.
کلیدواژه: تخمین بایاس، کنترل ترافیک هوایی، ADS-B، سامانه نظارتی چندگانه
- مقدمه
TRES (بازسازی مسیر و مجموعه ارزیابی) در آینده نزدیک جایگزین بعضی از بخش های نسخه های کنونی مجموعه SASS-C (سیستم پشتیبان تحلیل نظارتی مراکز) می گردد [1]. این سیستمی می باشد که برای ارزیابی عملکرد مسیریابی چندحسگری/ چندهدف ATC (کنترل ترافیک هوایی) مورد استفاده قرار می گیرد. این مقاله به شرح معماری کلی سیستم های ارزیابی می پردازد، و جزییاتی را در مورد بعضی از عوامل مرتبط با فرصت بازسازی مسیر می دهد. فرصت بازسازی مسیر (OTR) به عنوان فرایند پیمانه ای در TRES می باشد که تمام داده های واقعی موجود از تمام حسگرها مورد استفاده قرار می گیرد تا به مسیر مناسبی برای تمام واپیماها در حوزه مورد نظر دست یابیم. این موارد نیازمند ارزیابی دققیق برای بازسازی مسیر، تخمین بایاس و اصلاح به منظور هماهنگی اندازه گیری های حسگر مختلف، و هموارسازی چندحسگر تطبیقی برای دستیابی به مسیرهای داخلی نهایی می باشد. باید اشاره کنیم که این یک فرایند پیمانه ای برون خطی بوده که بطور بلقوه کاملا متفاوت از سیستم های همجوشی داده تمام وقت معمول مورد استفاده در ATC (کنترل ترافیک هوایی) می باشد. ترتیب پردازش داده و تکنیک های پردازش متفاوت می باشند.
چکیده
یک الگوریتم آرایشی به نام Genie برای تخصیص مدول ها (modules) به مکان های موجود برروی قطعات ارائه می شود. Genie نوعی تطابق و انطباق تکنیک الگوریتم ژنتیکی است که درگذشته به عنوان ابزار جامعه هوش مصنوعی مورد استفاده بوده است. این تکنیک به نوعی به عنوان پارادایم آزمایش و بررسی فضای وضعیت محسوب می شود. این تکنیک با ملاحظه هم زمان و دستکاری مجموعه ای از جواب ها، به جواب های خود دست میابد. به عنوان مثال، راه ها جهت تولید و ایجاد راه حل های «فرزندان، با هم در جفت گیری» می کند. Genie در بسیاری از نمونه های آزمایشی کوچک به طور گسترده به آن ها پرداخته شده است. راه حل های مشاهده شده آن کاملاً خوب و در چند نمونه به صورت مطلوب بوده اند.
کلیدواژگان: آرایش، الگوریتم های ژنتیکی، VLSI، طرح فیزیکی
مقدمه
LAYOUT PROBLEM مشکل اصلی در طراحی قطعه های VLSI است. به دلیل پیچیدگی که دارد غالباً به چند مشکل فرعی مجزا تجزیه می شود:
1. طراحی قطعه
2. جزء بندی
3. آرایش
4. مسیریابی
در این مقاله به بررسی مشکل آرایش – تخصیص عناصر مدار به مکان های روی قطعه پرداخته می شود. مسئله آرایش عبارت است از مجموعه ای از عناصر مدار یا ورودی های m، { e m و ….، e 1} = M و مجموعه ای از سیگنال ها یا شبکه های n، { Sn و …، S1 } = N. شبکه عبارت است از مجموعه ای از مدال های به هم متصل. ما علاوه براین مجموعه ای از مکان های قطعه L یا Slot را ارائه خواهیم داد. وقتی L≥m است، { Cl و …..، C1 } = L. Solt ها به صورت یک ماتریس همراه با ردیف های r و ستون های C سازمان دهی می شوند. هدف از این، طراحی بهینه و مطلوب هر مدول متناسب با Solt خود آن در حالی که محدودیت های الکتریکی را تحقق می بخشد می باشد. در این وضعیت بهینگی و مطلوبیت بر اساس مسیریابی مورد انتظار آرایش اندازه گیری می شود. دو مؤلفه مشترک بسیاری از اندازه های مسیریابی عبارت است از برآورد میزان تراکم سیم و میزان سیم مورد نیاز برای مسیر تمام اتصالات و ارتباطات. به حداقل رساندن میزان تراکم سیم مورد انتظار اهمیت دارد به گونه ای که یک سیم کشی عملی معمولاً با تراکم کمتر راحتر است. کم کردن میزان مورد انتظار سیم نیز اهمیت دارد. به گونه ای میزان آماده سازی سیگنال مدار معمولاً نسبت معکوس با میزان سیم دارد.
چکیده
منابع تولید پراکنده (DG) به علت تقاضای روبروی رشد انرژی دارای اهمیت زیادی در سیستم های توزیع می گردند. مکان ها و توانمندی های منابع تولید پراکنده تاثیر عمیقی در تلفات سیستم در شبکه توزیع داشته اند. در این مقاله، یک ترکیب نوینی از الگوریتم ژنتیک (GA) / بهینه سازی ازدحام ذرات (PSO) برای جایابی و یافتن اندازه بهینه تولید پراکنده در سیستم های توزیع معرفی می شود. هدف این است که تلفات توان شبکه کمینه شده، تنظیم ولتاژ بهتری صورت گرفته و پایداری ولتاژ در چارچوب قیود عملکردی و امنیتی سیستم در سیستم های توزیع شعاعی حاصل شود. یک تحلیل تشریحی روی سیستم های 33 و 39 باس انجام شده است تا کارائی روش ارائه شده نشان داده شود.
کلیدواژه: منابع تولید پراکنده، الگوریتم ژنتیک، گمارش، بهینه سازی ازدحام ذرات، اتلاف
مقدمه
سیستم های توزیع معمولا جهت تسهیل کارکرد به صورت طبیعی شعاعی هستند. سیستم های توزیع شعاعی (RDSs) تنها در یک نقطه که همان پست باشد تغذیه می شوند. این پست، توان (برق) را مراکز تولید مرکزی و از طریق شبکه انتقال دریافت می کند. کاربران نهائی برق نیز توان الکتریکی را از پست و از طریق سیستم توزیع شعاعی که یک شبکه پسیو است دریافت می کنند. لذا، عبور توان در سیستم توزیع شعاعی به صورت یک طرفه است. نسبت R/X بالا در خطوط توزیع منجر به افت ولتاژ بزرگ، پایداری ولتاژ کوچک و افزایش تلفات توان می شود. در شرایط بارگذاری بحرانی در برخی نواحی صنعتی خاص، سیستم توزیع شعاعی به علت مقدار کم شاخص پایداری ولتاژ، در بیشتر گره های خود یک فروپاشی ناگهانی ولتاژ را تجربه می کند.
تامین توان راکتیو و کنترل ولتاژ، نوعی کلیدی از خدمات جانبی در بازار برق تجدید ساختار شده می باشد. در این مقاله، مروری بر برخی مسایل مهم تامین توان راکتیو، شامل تحلیل هزینه، قیمت گذاری توان راکتیو، و ارزیابی، ارایه می شود. یک پخش بار بهینه (OPF) نیز مبنی بر نظریه ی قیمت گذاری زمان واقعی، بکار می رود. دو تابع دف به ترتیب مدل سازی می شوند: کمینه کردن تلفات شبکه، و کمینه کردن هزینه های کل برای تامین توان راکتیو. همچنین، از یک الگوریتم ژنتیک (GA) با مقادیر واقعی نیز، برای کمک به یافتن بهینه ی کلی و بررسی راه حل ها، استفاده می شود. همچنین، در بررسی ها از سیستم ۳۰-شینه IEEE استفاده می شود.
کلیدواژگان: کنترل ولتاژ توان راکتیو، خدمات جانبی، پخش بار بهینه، الگوریتم ژنتیک، هزینه توان راکتیو
پروژه کارشناسی ارشد برق
فایل محتوای:
چکیده
مسیریابی در شبکه پویا یک فعالیت چالش انگیز است، چون توپولوژی شبکه ثابت نمی باشد. این مسئله در این بررسی با استفاده از الگوریتم مورچه ای برای مد نظر قرار دادن شبکه هایی که از چنین بسته های اطلاعاتی استفاده می کنند، مطرح می گردد. مسیرهای ایجاد شده توسط الگوریتم انت (مورچه) به عنوان داده ورودی برای الگوریتم ژنتیک می باشد. الگوریتم ژنتیکی مجموعه ای از مسیرهای مناسب را پیدا می کند. اهمیت استفاده از الگوریتم مورچه ای، کاهش اندازه جدول مسیر می باشد. اهمیت الگوریتم ژنتیک بر مبنای اصل تکامل مسیرها به جای ذخیره مسیرهای از پیش محاسبه شده می باشد.
کلیدواژه: مسیریابی، الگوریتم مورچه ای، الگوریتم ژنتیکی، معبر، جهش، هر یک از این موارد در زیر به بحث گذاشته می شود.
مقدمه
مسیریابی به عنوان فرایند انتقال بسته ها از گره مبدا به گره مقصد با هزینه حداقل می باشد. از این رو الگوریتم مسیریابی به دریافت، سازماندهی و توزیع اطلاعات در مورد وضعیت شبکه می پردازد. این الگوریتم به ایجاد مسیرهای عملی بین گره ها پرداخته و ترافیک داده ها را در بین مسیرهای گلچین شده ارسال کرده و عملکرد بالایی را حاصل می کند. مسیریابی به همراه کنترل تراکم و کنترل پذیرش به تعریف عملکرد شبکه می پردازد. الگوریتم مسیریابی می بایست دارای اهداف کلی از استراتژی مسیریابی بر مبنای اطلاعات سودمند محلی باشد. این الگوریتم همچنین می بایست کاربر را در مورد کیفیت خدمات راضی نگه دارد. بعضی از روش های مطرح شده برای رسیدن به این اهداف عبارتند از شبیه سازی حشرات اجتماعی و شبکه بسته شناختی. این دو روش از جدول مسیریابی احتمالات استفاده کرده و این امکان را به بسته ها می دهد تا به بررسی و گزارش توپولوژی و عملکرد شبکه بپردازند. دوریگو ام و دی کارو جی، شبکه مورچه ای را به عنوان روشی برای مسیریابی در شبکه ارتباطات مطرح می کنند. ار اسکوندر وورد، اون هالند، جانت (مورچه) بروتن و لئون روسکرانت، در مقاله شان به بحث در مورد حاصل شدن توازن ظرفیت در شبکه های ارتباطاتی با استفاده از الگوریتم مورچه ای می پردازند. تونی وارد در مقاله تخصصی اش به شرح این موضوع می پردازد که چگونه عوامل محرک بیولوژیکی می تواند برای حل مشکلات مدیریتو کنترل در ارتباطات مورد استفاده قرار گیرد. هدف این مقاله ایجاد راه حلی با استفاده از الگوریتم مورچه ای (استعاره حشره اجتماعی) و بهینه سازی راه حل با استفاده از الگوریتم های ژنتیکی می باشد. الگوریتم مورچه ای دسته ای از تراکم اطلاعاتی می باشد. تراکم اطلاعاتی روش جایگزینی را در ارتباط با طراحی سیستم اطلاعاتی ارائه می دهد که در آن عملیات خودگردانی، ظهور و توزیع جایگزین کنترل، پیش برنامه ریزی و تمرکز می گردد. این روش تمرکزش را بر روی توزیع، انعطاف پذیری، توانمندی و ارتباطات مستقیم و غیرمستقیم در میان عوامل نسبتا ساده قرار می دهد. الگوریتم ژنتیک به عنوان الگوریتمی می باشد که در آن جمعیت مرتبط با هر گره در مجموع برای حل مشکلات مشارکت دارد.