مقدمه
در تمام تأسیسات الکتریکی به خصوص تأسیسات فشار قوی، زمین کردن یکی از مهمترین و اساسی ترین اقداماتی است که برای رفاه و سلامتی واصولا ًًًادامه زند گی اشخاص که
به نحوی با این تجهیزات در تماس هستند و حتی در خارج از پست در رفت و آمد می
باشند باید با دقت هر چه تمام تر وبا توجه به قواعد قوانینی که بدین منظور تدوین شده اند
انجام گیرد.
در تأسیسات برق دو نوع زمین کردن وجود دارد که یکی را زمین کردن حفاظتی ودیگری را زمین کردن الکتریکی می نامیم.
زمین از موادی تشکیل شده که غالبا ً هادی الکتریسیته هستند به خصوص در حا لتی که مرطوب باشند. بنابراین اگر شخصی که روی زمین قرار دارد با جسمی که نسبت به زمین
دارای پتانسیل است تماس حاصل نماید به علت برقرار شدن جریان دچار برق گرفتگی
خواهد شد.
در این پروژه سعی شده انواع روشهای زمین کردن و محاسبات آنها بطور مختصر ارائه گردد. جهت هرگونه اطلاع بیشتر می توان به استاندارد VDE , 141 مراجعه نمود.
فصل اول
تاریخچه صنعت برق در جهان
تاریخچه صنعت برق در ایران
فصل دوم
نقشه ها و استاندارد ها
علائم کد گذاری در دیاگرام های شبکه برق
شناسایی اتصال خطوط
شناسایی ترانسفورماتورهای قدرت
مشخصات جریان الکتریکی
مقاومت الکتریکی
توان
انواع نقشه ها
خطوط انتقال
پایداری شبکه
خطوط انتقال هوایی
خطوط انتقال زمینی
شبکه های فشار قوی عمومی
فیدر
فصل سوم
تعریف پست
انواع پست
تقسیم بندی پستها
پستهای داخلی باز ونیمه باز
پستهای داخلی بسته
پستهای گازی (داخلی و بیرونی
پستهای معمولی بیرونی
فصل چهارم (تجهیزات پست
اجزاء تشکیل دهنده پست
تغذیه DC ایستگاه
باسبار (شین
انواع شین بندی
برقگیر
ترانس ولتاژ
ترانس ولتاژخازنی (C. V. T
ترانس جریان
سکسیونر
انتخاب سکسیونرازنظرنوع و مشخصات
انواع بریکرها (دژنکتورها
استاندارد های کلید قدرت
انواع مکانیزم قطع و وصل بریکر
لاین تراپ و PLC (تله موج
ترانسفورماتور قدرت
ساختمان ترانسهای قدرت روغنی
قسمتهای اصلی ترانسفورماتور
۱- هسته
۲- سیم پیچی های ترانس
۳- تانک اصلی روغن
۴- مقره ها (بوشینگ ها
سیستم های اندازه گیری و حفاظت ترانس
۱- کنسرواتور (منبع انبساط روغن
۲- تپ چنجر
۳- ترمو متر
۴- نشان دهنده سطح روغن
۵- رله بوخهلتز
۶- سوپاپ اطمینان یا لوله انفجاری
۷- رادیاتور
۸- پمپ هاوفن ها
فصل پنجم (حفاظت
حفاظت
۱- هدف از حفاظت
۲- انواع حفاظت
۳- کاربرد حفاظت
انواع رله حفاظتی از نظر اتصال به شبکه
موارداستفاده رله جریان زیاد
ضمائم
اینترلاک
تست رله
تست روغن
نمونه ای از مصرف بار ترانس در فصل گرم و سرد درایستگاه ۴۰۰
چکیده__ با پیشرفت ترانسفورماتورهای قدرت، انتقال قدرت مفید بدون-اتصال در مقیاس بزرگ میان قالب های ثابت و مرجع _برای کاربردهایی مانند وسایل نقلیه برقی، تعادل مواد و گرمایش پلاسما برای علم گداخت (هسته ای) _ مساله ای است که توجه همگان را به خود وا داشته است. توکامک، ابزار گداخت توسعه یافته رایجی می باشد که گرمایش، یکی از تکنولوژی های کلیدی آن برای راهکار راکتور آینده اوست. اغلب در سیستم NBI، برای گرمایش توکامک، از توبیخ کننده برای حفاظت دستگاه استفاده می شود [۱-۳]. NBI حاظر، از ترانسفورماتورهای ایزوله (جداکننده) فشار قوی (HV) ۵۰/۶۰ Hz استفاده می کند تا منبع توان dc خود را برای ارایه به جریان بایاس توبیخ کننده تنظیم کند، که ممکن است کل تغییرات شار هسته را از تقطه اشباع منفی به نقطه اشباع مثبت یکی از حلقه های اصلی BH اش، مصرف کند. با استفاده از منبع توان بایاس، می توان توبیخ کننده را به نیمی از وزنش کاهش داد. اما این ترانسفورماتور جداکننده فشار قوی ۵۰/۶۰ Hz، بسیار سنگین تر از سیستم ایزوله کننده فاشر قوی (HV) فرکانس بالا (HF) است. این مقاله نیازمندی ها، طراحی و آزمایش این سیستم های قدرت فشرده را، مبنی بر تکنولوژی های سوییچینگ با-جریان-صفر فشار قوی فرکانس بالا، برای توبیخ کننده NBI "توکامک ابررسانای پیشرفته آزمایشگاهی" (EAST) و نیز پتانسیل آن برای تامین توان HVDC فشرده، ارایه می دهد. استراتژی کنترل جدید آن نیز، با یک ماکروپالس تشکیل شده از چندین ماکروپالس پیوسته محدود دیجیتال، پیاده سازی می شود. بیش از ۱۰۰ ارزیابی آزمایشگاهی نیز، به منظور بررسی نتایج تحلیل انجام می شود که می توان از آن برای طراحی مهندسی دقیق منابع توان برای EAST، مبنی بر IGBT، استفاده کرد.
کلیدواژگان:ه__ منابع توان فشرده (PS) ، توبیخ کننده هسته، توکامک ابررسانای پیشرفته آزمایشی (EAST) ، راکتور آزمایشی گرمای هسته ای بین المللی (ITER) ، انتقال قدرت با تزویج القا (IPT) ، ترانسسفورماتورهای جدا کننده (ایزوله) فشار قوی (HV) ، فرکانس بالا (HF) ، طیف خنثی (NB) ، مایکروویو، حالت پالس، IGBT، کلیدزنی (سوییچینگ) جریان-صفر (ZCS).
پروژه کارشناسی ارشد برق
فایل محتوای:
چکیده
این مقاله یک ژنراتور فلش ولتاژ ترانسفورمری (VSG) مناسب برای اندازه گیری قابلیت سوسپتانس تجهیزات الکتریکی به فلش ولتاژ را بیان می کند. در VSG (منظور تولید کننده فلش ولتاژ که بر مبنای ترانسفورماتور کار می کند) ساخته شده، از یک اتو ترانس و 2 رله حالت ماندگار (SSR) برای ارایه ولتاژ نامی و ولتاژ فلش به بار استفاده شده است. وضعیت سوییچینگ دو رله حالت ماندگار (SSR) توسط سیگنال مدت زمان ولتاژ نامی و ولتاژ فلش تولید شده توسط مدارات الکترونیکی کنترل می شود. نتایج عملکرد VSG نشان می دهد که این ژنراتور فلش کنترل موثری از دامنه فلش، مدت زمان فلش، نقاط آغاز و پایان فلش بر روی شکل موج ولتاژ خروجی انجام می دهد. همچنین اگر نیاز باشد می تواند به عنوان تولید کننده swell ولتاژ و تولید کننده وقفه ولتاژ عمل کند. با تهیه ترانسفورماتور فشار قوی از سمت اولیه، VSG می تواند فلش، swell، و وقفه ولتاژ فشار قوی را نیز ارائه دهد. ساخت VSG ارایه شده در آزمایشگاه و بطور دستی آسان تر است، و هزینه های ساخت آن بسیار پایین تر از تهیه محصولات VSG آن از بازار فعلی است.
کلیدواژه: حساسیت تجهیزات، قطع ولتاژ، فلش ولتاژ، ژنراتور فلش ولتاژ، اماس ولتاژ
مقدمه
سیستم های قدرت مدرن کماکان در حال حساس و حساس تر شدن به کیفیت توان تولید شده می باشند. دلیل این امر این است که نه تنها تجهیزات مدرن شامل انواع زیادی از قطعات الکترونیکی که می توانند در برابر اختلالات توان بسیار آسیب پذیر باشند می باشد، بلکه مصرف کننده ها نیز نسبت به تلفات ناشی از عملکرد نادرست تجهیزات برقی حساستر شده اند. یکی از رایج ترین تداخلات توان، فلش ولتاژ است که معمولن بطور اتفاقی رخ می دهد و چند سیکلی هم بیشتر دوام نمی یابد. اگرچه تجهیزات حساس، معمولن در مقابل چنین فلش هایی ترییپ داده یا خاموش می شوند؛ حتی اگر ولتاژ نامی در چند سیکل باز گردد. بدین ترتیب، فلش ولتاژ بیشترین تلفات مالی را در مقایسه با بیشتر انواع تداخلات توان در پی دارد [1]، [2].