چکیده
دستیابی به یک سیستم قدرت با امنیت کاری مناسب ازاهداف ضروری و بسیار مهم صنعت برق می باشد. از طرفی بروز اختلالات بزرگ و تهدید آمیز برای این سیستم اجتناب ناپذیر است. لذا چگونگی پرهیز از این مشکل و رسیدن به نقطه کار مناسب پس از وارد شدن اختلال به سیستم برای مهندسان برق به صورت دقدقه ای جدی در آمده است.
گستردگی شبکه های برق و مدل های پیچیده عناصر قدرت پایداری سیستم را از حالت ساده شبکه های کوچک خارج ساخته و عوامل مختلفی را دراثر گذاری بر پایداری این شبکه ها دخیل نموده است.
عملکرد و رفتار یک سیستم قدرت در یک رژیم کاری مشخص متشکل از کلیه ویژگی های رفتاری می باشد که سیستم از خود نشان می دهد و با شناخت آن ها می توان عملکرد سیستم را بررسی نمود. برای یک سیستم قدرت در حال بهره برداری چنانچه کلیه متغیر های بهره برداری از قبیل دامنه ولتاژ شین ها-زاویه فاز شین ها – جریان و توان عبوری از خطوط – توان تولیدی ژ نراتورها و… نسبتا ثابت باشند در این صورت گوییم که سیستم قدرت در حالت تعا دل بوده و این حالت کاری را حالت کار در رژیم ماندگار گوییم.
اما چنانچه در یک سیستم قدرت به طور ناگهانی امپدانس اتصال دو نقطه از شبکه نسبت به زمین کاهش یافته و برابر یا نزدیک صفر گردد اصطلاحا گویند که در آن نقطه از شبکه اتصال کوتاه اتفاق افتاده و سیستم قدرت از رژیم ماندگاری به رژیم گذرای اتصال کوتاه منتقل گردیده است.
همچنین اگر در یک سیستم در حال بهره برداری بطور نا گهانی خطا واختلالی روی دهد که برای یک دوره بسیار کوتاه باعث افزایش ویا کاهش انرژی جنبشی ژنراتورهای سنکرون گردد و پس از رفع خطا در یک نقطه تعادل جدید مستقر گردد به این دوره تغیرات انرژی جنبشی واحدها و برقراری تعادل جدید در آنها دوره و رژیم کاری پایداری گذرا گفته می شود. در هنگام وقوع پدیده های ذکر شده تغیراتی در شبکه صورت خواهد گرفت که در این رابطه مهندسان باید بتوانند به سوالات کلی که در مورد چگونگی برخورد با این پدیده ها ایجاد می شود پاسخ دهند.
چکیده
همانطور که صنعت نیمه رسانا فشار بی رحمانه خود را به وسیله فناوری های نانو CMOS ادامه می دهد، قابلیت اطمینان طولانی مدت دستگاه و وقوع خطاهای دشوار به عنوان نگرانی عمده ای پدیدار شده است. قابلیت اطمینان طولانی مدت دستگاه شامل تنزل پارامتری است که منجر به اتلاف عملکرد و نیز خطاهای دشوار می گردد که موجب اتلاف functionality می شود. در نقشه جاده ITRS گزارش شده است که تأثیر آزمایش سوختن مرسوم در افزایش عمر محصول در حال فرسوده شدن است. بنابراین به منظور حصول اطمینان از قابلیت اطمینان کافی محصول، کشف خطا و پیکربندی مجدد سیستم می بایست در زمان اجرا در میدان انجام شود. گرچه ساختارهای حافظه منظم در مقابل خطاهای دشوار با استفاده از کدهای تصحیح خطا حفاظت شده اند، بسیاری از ساختارها در داخل هسته ها فاقد حفاظ باقی مانده اند. چندین روش آزمایش آنلاین مطرح شده به آزمایش همزمان متکی اند یا به صورت دوره ای در فواصل معین صحت را کنترل می کنند. این روش ها به علت تلاش طراحی قابل توجه و هزینه سخت افزاری جالب توجه اما محدود هستند. علاوه بر این کمبود قابل مشاهده بودن و قابل کنترل بودن حالات ریز معماری منجر به رکود طولانی و ذخیره سازی وسیعی از الگوهای Golden می گردد. ما در این مقاله یک الگوی کم هزینه را به منظور کشف و اشکال زدایی خطاهای دشوار به وسیله دانه دانه بودن ریز در داخل هستته ها و در حال کار نگه داشتن هسته های معیوب با قابلیت و عملکرد تحلیل رفته بالقوه پیشنهاد می کنیم. راه حل شامل هر دو سخت افزار و نرم افزار زمان اجرا بر اساس مفهوم ماشین مجازی طراحی شراکتی می باشد که دارای قابلیتی جهت کشف، اشکال زدایی و تفکیک خطاهای مشکل در ساختارهای آرایه غیر پنهان کوچک، واحدهای اجرایی، و منطق ترکیبی در داخل هسته ها است. ثبات های signature سخت افزاری به منظور تسخیر ردّپای اجرا در خروجی واحد های در حال کار در داخل هسته ها مورد استفاده قرار می گیرند. یک لایه نرم افزاری زمان اجرای (microvisor) تابعی را همزمان بر روی چند هسته به منظور تسخیر ردپای signature در سرتاسر هسته ها جهت کشف، اشکال زدایی و تفکیک خطاهای دشوار آغاز می نماید. نتایج نشان می دهند که با استفاده از مجموعه هدفمندی از دنباله آزمایش تابعی، خطاها می توانند برای یک سطح دانه دانه ریز در داخل هسته ها اشکال زدایی گردند. هزینه سخت افزاری الگو کمتر از سه درصد است، در حالی که وظایف نرم افزار در سطح بالا انجام شده است و منجر به یک تلاش و هزینه طراحی نسبتا پایین می گردد.
چکیده
پیشرفت های فنی در چند سال اخیر شکل های جدیدی از تولید برق را به ارمغان آورده است منابع کوچک (MS). وابستگی منابع تولید کوچک با سیستم های توزیع ولتاژ پایین می تواند نوع جدیدی از سیستم قدرت را شکل دهد (شبکه کوچک). شبکه کوچک می تواند به شبکه قدرت اصلی متصل گردد یا اگر از شبکه قدرت در مواجهه با یک رویداد برنامه ریزی شده یا نشده محافظت شود بطور خود گردان عمل می کند. علاوه بر این، بازیابی سریع سیستم (قابلیت شروع خاموشی) پس از شرایط خرابی وسیع می تواند ارائه گردد. این مفهوم با چهارچوب پروژه R&D اروپایی شبکه های کوچک ماحصل تعدادی پژوهش سازمانها و شرکت ها توسعه یافته است. همچنین یک شبکه کوچک شامل یک کنترل سلسله مراتبی و سیستم مدیریتی است: در یک سطح بالاتر، کنترل کننده مرکزی شبکه کوچک مدیریت فنی و اقتصادی شبکه کوچک را ارائه می دهد؛ در سطح پایین تر، کنترل کننده های بار با استفاده از مفهوم قابلیت قطع کنندگی می توانند برای کنترل بار استفاده شوند؛ همچنین، کنترل کننده های منابع کوچک برای کنترل داخلی سطوح تولبد توان اکتیو و راکتیواستفاده می شوند. کنترل کننده های منابع کوچک واحدهای کوچکی کمتر از kw 100 هستند، بیشتر آنها با واسطه الکترونیکی توان، از منابع انرژی تجدید پذیر (انرژی بادی و خورشیدی) یا سوخت فسیلی به شیوه تولید محلی با راندمان بالا (توربین های کوچک یا پیل های سوختی) استفاده می کنند. طراحی موفق و عملیاتی یک شبکه کوچک نیاز به یکسری مسائل فنی و غیر فنی طاقت فرسا بخصوص مربوط به کنترل و کارکردشان دارد. حضور واسطه الکترونیکی توان در پیل های سوختی، پنل های قدرت زای نوری، توربین های کوچک یا تجهیزات ذخیره کننده در مقایسه با سیستم های قدرت متداول که از ژنراتور های سنکرون استفاده می کنند شرایط جدیدی را به ارمغان می آورد.
چکیده
اخیرا نصب ژنراتورهای کوچک در شبکه های توزیع، به علت مزیت های متعددی که دارند، افزایش یافته است. یکی از مسائل مهم مربوط به این ژنراتورهای توزیع شده، تاثیر خطاهای سیستم بر پایداری گذرای آنها است. به علت ثابت اینرسی کم ژنراتورهای مقیاس کوچک و عملکرد آهسته رله های حفاظتی شبکه های توزیع، ایجاد ناپایداری گذرا برای این ژنراتورها کاملا محتمل است. در این مقاله، رفتار دینامیک ژنراتورهای سنکرون مقیاس کوچک در برابر خطاهای سیستم و حساسیت آن ها به پارامترهای سیستم مورد بررسی قرار می گیرند. سپس یک روش حفاظتی عملی با استفاده از اضافه جریان موجود و رله های کمبود ولتاژ پیشنهاد می شود و به مزیت ها و معایب آن اشاره می شود. در ادامه، بر اساس اطلاعات به دست آمده از تحلیل حساسیت، یک رله حفاظتی جدید برای حفاظت ژنراتورها در برابر ناپایداری پیشنهاد می شود. رله پیشنهادی از یک ژنراتور قدرت فعال برای تعیین زمان مناسب برای قطع کردن ژنراتور استفاده می کند. نتایج شبیه سازی عملکرد مطمئن و مقاومت رله پیشنهادی در برابر ناپایداری های گذرای سیستم تایید می کنند. علاوه براین، الگوریتم پیشنهادی با ژنراتورهایی با قابلیت کار کردن با شبکه های سراسری خطا دار، هم سازگار است.
اصطلاحات شاخص: سیستم حفاظتی تولید پراکنده (DG) ؛ تولید پراکنده؛ قابلیت کار کردن با شبکه های سراسری خطا دار (FRT) ؛ پایداری گذرا
مقدمه
تولید پراکنده (DG) به عنوان یک منبع توان الکتریکی که مستقیما به شبکه توزیع یک سیستم قدرت متصل می شود، تعریف می شود [1]. این روزها نصب DG ها در سیستم های قدرت به دلیل مزایایی که دارند، از جمله کاهش افت، پیک سایی، خدمات کمکی، کیفیت توان بالاتر، زمان ساخت کوتاه تر شان، احتمال افت بار کمتر و هم چنین تعویق انتقال، جایگزینی توزیع، مسائل مقررات زدایی و نگرانی های زیست محیطی، رو به افزایش است [2]- [5]. با این حال، اتصال داخلی DG ها برخی تغییرات را به سیستم های توزیع موجود تحمیل می کند و می تواند در سیستم های قدرت ناپایداری ایجاد کند و حتی منجر به قطع برق شود [6], [7]. وقتی DG بطور موازی با سیستم شبکه برق کار کند، رویه حفاظتی سیستم های توزیع سنتی را بهبود می دهد. رله کردن مناسب و تنظیم DG می توانند مهم ترین لوازم تعیین کننده برای جلوگیری از ناپایداری ژنراتور باشند.
خلاصه
در این مقاله امکان اجرای منطق فازی مبنی بر پایدار کننده سیستم قدرت با ورودی های محلی و راه دور ارائه شده است. با استفاده از سیگنال های سراسری با پشتیبانی سیستم تعیین موقعیت جهانی (GPS) و اندازه گیری گسترده (WAM) احتمال چشم انداز جهانی سیستم قدرت و میرایی بهتر برای ناحیه بین نوسانات را افزایش می دهد. ما دو ورودی کنترل کننده منطق فازی برای بررسی کردن اتخاذ کرده ایم ورودی محلی سیگنال ژنراتور، انحراف سرعت روتور برای میرایی نوسانات حالت محلی استفاده شده است. سیگنال های سراسری به دست آمده از WAM، مانند فرکانس دیفرانسیل ناحیه یا انحراف توان موثر خط ارتباطی برای میرایی ناحیه بین نوسانات استفاده شده است. در این مطالعه، هر دو سیگنال گذرا و سیگنال کوچک تحلیل پایداری
برای تعیین عملکرد سیستم مورد مطالعه استفاده شده اند.
کلمات کلیدی: منطق فازی، پایدار کننده سیستم قدرت، واحد اندازه گیری فازور،
اندازه گیری های گسترده.
. مقدمه
با افزایش بارگذاری خطوط انتقال طولانی، پایداری دینامیکی و گذرا پس از یک خطای بزرگ به طور فزاینده مهم است، و آنها می توانند یک عامل محدود کننده در انتقال توان شوند. شرایط عملیاتی بار گذاری شده می تواند احتمال ناحیه بین نوسانات میان کنترل مناطق مختلف و حتی سیستم پشتیبان را افزایش بدهد PSSs حد پایداری سیستم قدرت و گسترش قابلیت انتقال توان با افزایش میرایی سیستم بوسیله نوسانات فرکانس پایین همراه با حالت های الکترومکانیکی را تقویت می کند