ایجاد سیستم خبره ارجاع بیمارستان همراه با الگوریتم سیستم پشتیبانی تصمیم گیری مبتنی بر بهینه سازی و پیش بینی…

دسته: پزشکی

حجم فایل: 1207 کیلوبایت

تعداد صفحه: 32

ایجاد سیستم خبره ارجاع بیمارستان همراه با الگوریتم سیستم پشتیبانی تصمیم گیری مبتنی بر بهینه سازی و پیش بینی

چکیده

تحقیق کنونی برای ایجاد یک سیستم خبره با استفاده از مسئله ارجاع بیمارستانی به عنوان نمونه، شیوه جدیدی را ارائه می دهد. عوامل زیادی نظیر خصیصه های سازمانی، ریسک های بیمار، پیمودن مسافت و فرصت های ادامه حیات و عوارض، می بایست در تصمیم گیری انتخاب بیمارستان گنجانده شوند. مطلوب این است که هر بیمار به طور جداگانه به وسیله فرایند تصمیم نه تنها با در نظر گرفتن وضعیت شان بلکه باورهای آن ها در مورد ارزیابی مقایسه ای میان خصیصه های بیمارستانی مطلوب، درمان شود. یک سیستم خبره می تواند به این تصمیم گیری پیچیده کمک نماید. بالأخص زمانی که عوامل زیادی باید در نظر گرفته شوند، ما روشی را پیشنهاد داده ایم که الگوریتم سیستم پشتیبانی تصمیم گیری مبتنی بر بهینه سازی و پیش بینی (PODSS) خوانده می شود که بدون یک پایه دانش مشخص، سیستم خبره ای را به وجود می آورد. این الگوریتم دانش را خودش با ایجاد طبقه سازی های یادگیری ماشینی از طریق مجموعه ای از نمونه های برچسب زده شده، کسب می کند. در پاسخ به یک سؤال، ‌الگوریتم با استفاده از یک مرحله بهینه سازی، پیشنهاد سفارشی می دهد تا به بیمار کمک می کند که احتمال دستیابی به یک نتیجه مطلوب را به حد اکثر برساند. در این حالت، بیمارستان پیشنهادی، راه حل بهینه ای است که احتمال نتیجه مطلوب را به حداکثر می کند. این سیستم خبره با طرح ریزی درست می تواند عوامل زیادی را ترکیب کند تا اینکه پشتیبانی تصمصم گیری انتخاب بیمارستان را در سطح فردی ارائه نماید.

کلیدواژگان: سیستم های پشتیبانی تصمیم گیری؛ سیستم های خبره؛ داده کاوی؛ یادگیری ماشینی؛ ماشین های بردار پشتیبانی؛ بهینه سازی؛ هوش مصنوعی؛ ارجاع بیمارستان؛ کیفیت بیمارستان

خرید

مطالب مرتبط

الگوهای تناوبی اسنکرون داده کاوی در سری زمانی داده…

چکیده

کشف تناوبی داده های سری زمانی به عنوان مسئله مهمی در بسیاری از برنامه های کاربردی می باشد. اکثر تحقیقات پیشین تمرکز خود را بر روی بررسی الگوهای تناوبی اسنکرون قرار داده و حضور الگوهای ناهمتراز را به دلیل مداخله پارازیت های تصادفی مد نظر قرار نمی دهد. در این مقاله، مدل انعطاف پذیرتری را در ارتباط با الگوهای تناوبی اسنکرون مطرح می کنیم که تنها درون توالی مد نظر قرار گرفته و وقوع آن ها به دلیل وجود این اختلالات تغییر می یابد. دو پارامتر min-rep و max-dis،به کار گرفته می شوند تا به تعیین حداقل تعداد تکرارها بپردازیم که در هر بخش از ظهور الگوها غیرمختل و حداکثر اختلال بین دو بخش معتبرمتوالی، مورد نیاز می باشد. بعد از برطرف شدن این دو شرایط، بلندترین توالی معتبر الگو، برگشت داده می شود. یک الگوریتم دو مرحله ای طراحی می گردد تا در ابتدا به ایجاد دوره های بلقوه از طریق برش مبتنی بر مسافت به دنبال روش تکرار برای دسترسی و ایجاد اعتبار برای الگوهاو مکان یابی طولانی ترین توالی معتبر بپردازد. ما همچنین نشان می دهیم که این الگوریتم نه تنها پیچیدگی های زمانی طولی را با توجه به طول توالی ها ایجاد می کند بلکه دسترسی به بهره وری فضا دارد.

کلیدواژه: الگوهای تناوبی اسنکرون، روش مبتنی بر بخش، تناوب نسبی

مقدمه

تشخیص تناوبی در ارتباط با اطلاعات سری زمانی به عنوان یک مسئله چالش انگیز می باشد که دارای اهمیت مهمی در بسیاری از کاربردها می باشد.بیشتر تحقیقات گذشته در این دوره بر این مبنا می باشد که اختلالات در یک سری از تکرار الگوها، منجر به عدم همزمان سازی وقوع متوالی الگوها با توجه به رویدادهای گذشته نمی گردد. برای نمونه، "جو اسمیت هر روز روزنامه می خواند" به عنوان یک الگوی تناوبی می باشد. حتی اگر او هر از گاهی در صبحگاه روزنامه نخواند، چنین اختلالی این حقیقت را تحت تاثیر قرار نمی دهد که او در صبح چند روز متوالی روزنامه می خواند. به عبارت دیگر، این اختلالات تنها در ارتباط با وقوع مشکلات پیش می آید اما این موارد معمول تر از ورود پارازیت های تصادفی نمی باشد. به هر حال چنین فرضیاتی اغلب محدود کننده بوده از این رو ما ممکن است نتوانیم به تشخیص بعضی از الگوها بپردازیم اگر بعضی از این توالی ها به دلیل وجود پارازیت ها، دچار اختلال گردند. کاربردهای مربوط به پر کردن موجودی ها را مد نظر قرار دهید. پیشینه مربوط به سفارشات صورت های موجود به عنوان یک توالی مد نظر قرار می گیرد. تصور کنید، که فاصله زمانی بین اشباع داروها به طور نرمال، ماهانه باشد. شیوه های مربوط به اشباع سازی در شروع هر ماه قبل از شروع آنفولانزا مد نظر قرار می گیرد که در نهایت منتهی به فرایند اشباع سازی در هفته سوم می گردد. به این ترتیب اگر چه این بسامد اشباع سازی, در هر ماه تکرار می گردد، این زمان به سه هفته در ماه منتهی می گردد. از این رو، این مورد زمانی مد نظر قرار می گیرد که این الگوها قابل تشخیص بوده و این اختلالات در یک حد مطلوبی باشد.

خرید

مطالب مرتبط

سیستم کشف اطلاعات مبتنی بر آمیب (ترجمه)…

چکیده

ما سیستم کشف اطلاعات مبتنی بر آمیب یا سیستم داده کاوی را مطرح می کنیم که با استفاده از ارگانیسم آمیبی شکل و سیستم کنترل مرتبط به آنبه اجر در می آید. سیستم امیب به عنوان یکی از الگوهای محاسباتی غیرسنتی جدید مد نظر قرار گرفته، که می تواند محاسبات موازی انبوه و پیچیده ای را انجام داده که ازفعالیت های پیچیده امیب اسنفاده می کند. سیستم مورد نظر ما ترکیبی از واحدهای سنتی مبتنی بر اطلاعات بوده که بر روی کامپیوترهای معمولی و واحد جستجوی مبتنی بر امیب با رابط واحد کنترل امیب به اجرا در می آید. راه حل ها در سیستم ما دارای مسیردهی یک به یک نسبت به راه حل های شناخته شده دیگر همانند شبکه های عصبی و الگوریتم های ژنتیکی می باشد. این قابلیت مسیردهی، چنین امکانی را برای امیب ایجاد می کند تا تکنیک هایی را که در حوزه های دیگر ایجاد شده است بکار گرفته و مورد استفاده قرار دهد. شکل های مختلفی از مراحل کشف اطلاعات معرفی شده اند. همچنین انواع جدیدی از تکنیک کشف اطلاعات به نام «حل مسئله مستقل» مورد بحث قرار می گیرد.

کلیدواژه: محاسبات مبتنی بر امیب؛ کشف اطلاعات؛ داده کاوی؛ الگوی محاسباتی جدید

مقدمه

کشف اطلاعات- یعنی مفهوم کامپیوترهایی که بطور اتوماتیک اطلاعات مفیدی را جستجو می کنند به عنوان یک جنبه جذاب و نوید بخش برنامه های کاربردی به منظور کاربرد عملی آن می باشد. الگوهای محاسباتی جدید- در 40 سال گذشته سخت افزار کامپیوتر تحت سلطه CMOS سنتی یا مدارهای مجتمع مبتنی بر سیلیکون بوده است (که همچنین به نام معماری مبتنی بر سیلیکون می باشد). امروزه، مفاهیم معماری کامپیوتر بر مبنای اصول کلی جدید به غیر از فناوری مبتنی بر سیلیکون توجه زیادی را به سمت خود جلب کرده است. این مقاله طرح کشف اطلاعات را مطرح می کند که از سیستم مبتنی بر امیب، که یکی از الگوهای محاسباتی جدید می باشد، مطرح می کند.

خرید

مطالب مرتبط